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Abstract
The interplay between chaotic tunnelling and dynamical localization in mixed
phase space is investigated. Semiclassical analysis using complex classical
orbits reveals that tunnelling through torus regions and transport in chaotic
regions are not independent processes, rather they are strongly correlated
and described by complex orbits with both properties. This predicts a
phenomenon analogous to the quantum suppression of classical diffusion:
chaotic tunnelling is suppressed as a result of dynamical localization in chaotic
regions. This hypothesis is confirmed by numerical experiments where the
effect of destructive interference is attenuated.

PACS numbers: 03.75.Lm, 05.45.Mt, 03.65.Sq, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

Tunnelling phenomena are purely quantum effects. Nevertheless, its nature is strongly
influenced by underlying classical dynamics. In particular nontrivial aspects appear in
the dynamical tunnelling in mixed-type phase space, in which quasi-periodic and chaotic
trajectories coexist [1]. Tunnelling transitions between quasi-doublet states are enhanced by
chaotic states [2] and the existence of nonlinear resonances also leads to a qualitative change of
tunnelling processes [3, 4]. The problem of quantum tunnelling in multidimensional systems
or more specifically in nonintegrable systems first raised in [5] would be of fundamental
importance in quantum mechanics, and an approach taken there has recently been extended
in [6]. However, our understanding for multidimensional tunnelling is still far from complete.
A primary difficulty lies in the fact that dynamical tunnelling in chaotic systems takes place
in a very complicated phase space; the structure of the classical phase space itself is not an
easily understandable object. Another reason would be that dynamical tunnelling proceeds in
complex environments in the sense of wave phenomena. Scarring [7] or dynamical localization
[8, 9], or other types of invariant structures become sources of partial structures often observed
in wavefunctions. It is not clear at all to what extent these various wave effects are independent
of each other. These aspects make it difficult to evaluate the tunnelling rate between torus to
chaotic regions quantitatively.
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The trajectory description would be one of the promising strategies to understand quantum
phenomena of chaotic systems. In particular, the semiclassical analysis is now recognized as
an efficient approach to this end, and there are indeed a bunch of numerical tests supporting its
validity. Concerning dynamical tunnelling, it was shown that the complex semiclassical theory
works fairly well and explains the mechanism of tunnelling penetration out of quasi-periodic
regions to chaotic seas [10–12]. In such a treatment, the classical dynamics is extended to
complex phase space, and the trajectories on the Julia set are most responsible for reproducing
tunnelling wavefunctions [13].

The aim of the present letter is, based on the arguments predicted by the complex
trajectory description of chaotic tunnelling, to show that dynamical tunnelling in mixed
phase space and dynamical localization are strongly correlated to each other, so that the
destruction of coherence, or more precisely the destruction of destructive interference in chaotic
regions, not only induces delocalization of wavefunction in chaotic regions, but also causes
strong enhancement of tunnelling transition. In other words, ‘genuine’ chaotic tunnelling
is suppressed by dynamical localization in surrounding chaotic regions, which is entirely an
analogous mechanism as dynamical localization suppresses classical diffusion [8, 9]. The
result must serve as further understandings of amphibious states [14, 15], recently discovered
quantum states that show the failure of semiclassical wavefunction hypothesis [16].

We first provide evidence for why we can predict that chaotic tunnelling is tightly
correlated with the dynamical localization process. As found in [11, 13], an exponentially
large number of complex orbits appear as the contributors of the time-domain semiclassical
propagator, and they indeed have almost equal weights in the semiclassical sum, which
means that chaotic tunnelling occurs as a consequence of superposition of exponentially many
component waves. To demonstrate it, we here employ an area-preserving map

F :

(
p′

q ′

)
=

(
p − V ′(q)

q + T ′(p′)

)
(1)

where

T ′(p) = ap + 1
2 (d1 − d2) + 1

2 [ap − ω + d1] tanh b(p − pd) + 1
2 [−ap + ω + d2] tanh b(p + pd)

(2)

V ′(q) = −K sin q. (3)

As illustrated in figure 1(d), the phase space is divided into quasi-periodic and chaotic regions
for b � 1. The kinetic term is almost linear for |p| < pd , and tends to the standard map for
|p| > pd . The parameters d1 and d2 were put in order to get rid of small island structures
which may appear around the border between the torus and chaotic regions. The smoothing
factor tanh is introduced to allow analytical continuation of the map into complex plane.

The wavepacket launched at p = 0 goes out of the torus region due to tunnelling effects.
Time evolution is described by the propagator in p-representation 〈pn|U |p0〉 and its leading-
order semiclassical approximation takes the form

Usc(p0;pn) =
∑

k

Ak(p0, pn) exp

{
i

h̄
Sk(p0, pn)

}
, (4)

where the summation is taken over all classical paths k satisfying given initial and final
momenta, Ak(p0, pn) and Sk(p0, pn) stand for the amplitude factor associated with the stability
and the corresponding classical action, respectively.
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Figure 1. (a) A set of initial conditions Mα
n (α = 0), and (b) its magnification. Bold lines are parts

of chained structures which substantially contribute to the semiclassical propagator (4). |Im qn| of
such orbits are very small. The parameters are chosen as n = 5, a = 5, b = 100, d1 = −24, d2 =
−26, ω = 1, pd = 5 and K = 2. (c) The distance from the real plane (Dn =

√
|pn|2 + |qn|2) as

a function of time step, where pn and qn denote (p, q) at n. The initial conditions are taken from
the points indicated in (a). Note that the orbits whose initial imaginary parts are small (square and
cross) do not necessarily go to the real plane directly, rather take a side trip in complex phase space.
(d) The Lagrangian manifold projected onto real phase space. Here the Lagrangian manifold refers
to Fn(Mα

n ), and the initial conditions giving these manifolds shown in (d) are bold lines shown in
(b). The dot (labelled as n = 0) represents the initial condition and curves (labelled as n = 5) is
the final Lagrangian manifold.

For given α ∈ R, we have a set for initial conditions of semiclassically contributing
complex paths as

Mα
n ≡ {(p0, q0 = ξ + iη) ∈ C

2 | p0 = α, pn ∈ R}. (5)

As shown in figures 1(a) and (b), there exist a bunch of complex trajectories that satisfy the
boundary conditions imposed on the initial and final steps. The set Mα

n is composed of strings,
each of which corresponds to the contribution k in the sum (4). In the case of the present map,
the number of strings is infinite even for a finite fixed time step, reflecting that the map contains
transcendental functions, while only finitely many complex orbits appear in the case of the map
composed of polynomial functions. What was found in [11, 13] is, irrespective of the form
of maps, that the tunnelling wavefunction is well controlled and quantitatively reproduced by
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special types of complex orbits. Such orbits appear as a chained structure in the set Mα
n , an

example of which is displayed in figure 1(b). The orbits forming chained structures are shown
in red colour. It was also shown in [11, 13] that the number of complex orbits substantially
controlling the tunnelling process increases as a function of time. Further important features
actually shown here are that all these approach the real plane exponentially. These are both
explained by the fact that such orbits are attracted by unstable periodic orbits on real plane
[24]. All the stable manifolds of unstable periodic orbits extended to complex plane in general
reach and intersect an initial state (p0, q0 = ξ + iη) ∈ C

2, thereby the orbits launched at the
initial state go out of regular regions by following stable manifolds and approach the real plane
exponentially.

It is important to note that, after reaching quasi-real regions, the dynamics of complex
orbits is almost governed by the real dynamics. Figures 1(c) and (d) plot the distance from the
real plane, and the projection of final manifolds onto the real plane, respectively. Three curves
shown in figure 1(c) show the itinerary of complex orbits staring at three initial points marked
in figure 1(a). Note that each one is not the itinerary of a single orbit, but a representative of
an exponentially large number of orbits around each initial point, since these initial points are
very close to each other. For example, the orbits starting at the red part in figure 1(b) behave in
the same way as the red curve in figure 1(c), so these are not distinguishable from each other.

Along the final manifold presented in figure 1(d), |Im qn| is very small, meaning that it
almost follows the stretching and folding mechanism in real phase space. We notice that,
within a single step, the orbits already go out from the torus region, and then go down to the
real plane exponentially with being stretched in the unstable direction. In the final step (n = 5
in this case), the stretched manifold is almost real. Therefore, if one focuses on the manifold
contained in the chaotic regions, the situation is almost the same as what is taking place in
real dynamics. In this way, complex orbits controlling chaotic tunnelling bear an amphibious
character : running through the torus region in purely imaginary space, and extending over
the quasi-real chaotic region.

Now recall that the wavefunction in chaotic regions is dynamically localized [8]. Although
the semiclassical interpretation of dynamical localization is not still clear [17], it may be at least
true that, if the semiclassical description works, the orbits contributing to the semiclassical
sum (4) should have appropriate correlations among them [18]; otherwise, classical diffusion
will be restored since the random phase in the semiclassical sum (4) cancels the off-diagonal
contributions. In the present situation, it would be natural to expect that the quasi-real orbits
discussed above are correlated in chaotic regions as well.

To check this speculation, we add noise to the chaotic region and destroy the coherence
predicted here. The experiment is done by putting the noise term to the kinetic term (2) as

T ′(p) = T ′
0(p) + ζT ′

noise(p). (6)

Here T ′
0(p) represents the kinetic term (2), and ζ a stochastic variable obeying the Gaussian

distribution with a variance ε. As schematically shown in figure 2(a), setting T ′
noise(p) = 1

for |p| � L,= 0 for |p| < L, we apply noise only in the region |p| � L. To see the tunnelling
amplitude, we will monitor the probability P torus

n defined as

P torus
n =

∫ pb

pa

|ψn(p)|2 dp, (7)

where ψn(p) represents the wavefunction at time step n, which is initially placed at p0 = 0,
and pa and pb are the coordinates specifying the minimum and maximal values of the torus
region projected onto the p-axis (see also figure 1(d)). Here, we imposed the periodic boundary
condition in the p-direction. As shown in figure 2(a), wavefunction outside the torus region
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Figure 2. (a) Time evolution of wavepacket launched at p0 = 0 state. Noise is applied only in the
hatched regions in the schematic picture of phase space. a = 4+0.1

√
3, ω = 2π(1+

√
7)/10, d1 =

−apd + ω, d2 = −apd −ω, pd = π, L = 2π, |pa −pb| = 1.6π,N = 1000 and h̄ = 0.1π , where
N denotes the system size. The noise intensity is given as ε = 0.1π . (b) P torus

n as a function of time
step n. The parameter values are the same as (a). Note that P torus

eq = 0.016 is far below a saturated
value for the case L = 2π . (c) The probability inside the torus region P torus

n as a function of n for
the cases without noise (ε = 0.0) and with noise (ε = 2π/100). The initial wavepacket is set as
ψ0(p) = A exp(2π iη(p)) (for |p| � 2π),= 0 (otherwise). Here A is a normalization constant,
and η(p) = uniformly random in [0, 1]. The plot is given after averaging over ten ensembles with
respect to the phase η(p).

spreads as time proceeds and the profile of its tail shows that the classical diffusion process is
recovered due to the destruction of interference which causes dynamical localization [19, 20].
Figure 2(b) plots P torus

n , clearly demonstrating a drastic enhancement of tunnelling probability.
Note that the ensemble of real classical orbits whose initial distribution is set to be the same
as the quantum initial distribution almost stays inside the torus region and does not leak
out even under the same noise. We can see that with the increase of L, which makes the
chaotic region surrounding the torus region large, the tunnelling rate decreases. As will be
reported elsewhere [23], extensive computations reveal that the exponent obtained by fitting
an exponential function to the initial decaying interval of P torus

n , up to 104 or 105 in the case
of figure 2(b), decreases monotonically as a function of L. These are consistent with our
interpretation that the presence of localized regions suppresses potentially existing tunnelling
amplitude, which is related to an exponentially large number of complex orbits shown in
figure 1. At the same time, note that the noise average is not necessary for the enhancement
of the tunnelling: figures 2(a) and (b) are such examples.

An important remark would be that the tunnelling leakage continues but its rate γ could
not be fitted by a simple exponential function in the whole time scale. The rate of penetration
slows down with time and it takes very long time, if so, to reach the equilibrium state. If
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the wavepacket spreads over phase space equally, the final probability should take the value
P torus

eq = 0.016, which is estimated under the assumption that the wavepacket is uniformly
distributed over the phase space. (Note again that the phase space in the experiment is compact
since periodic boundary conditions are imposed on both directions.) However, P torus

n is still
far above P torus

eq , and the localized peak around the torus region remains, meaning that the
wavepacket does not spread over phase space in an equal weight even after sufficiently long
time.

Since an exponentially large number of complex paths exist also from the chaotic region
to the torus region [13], the inverse tunnelling process should be enhanced as well. Indeed,
as shown in figure 2(c), if we place the initial wavepacket in the chaotic sea, instead of the
torus region, the tunnelling flow into the torus region is also highly enhanced with noise being
applied on chaotic seas. This result tells us that the chaotic region with external noise does
not work merely as a sink or reservoir. If this is the case, the unidirectional flow from the
torus to chaotic regions is expected to take place and the tunnelling back process should not
be observed.

Similar strong enhancement is observed when we design the system so that the wavepacket
moves freely in the regions |p| � L. The motivation to put ballistic regions is again in order to
get rid of dynamical localization, as the case where noise is applied. To realize it, we replace
the kinetic term (2) by

T ′(p)= 1
2ap{tanh b(p + L)− tanh b(p − L)} + 1

2 (ap − ω){tanh b(p − pd)− tanh b(p + pd)}.
(8)

The parameter L controls the border from which the ballistic propagation begins to occur.
Furthermore, to avoid the recurrence of the wavepacket to the initial domain, we put the
absorbing boundary at |p| = pcutoff . More precisely, a projection operator P̂ , which satisfies
〈p|P̂ |ψ〉 = 0 for |p| > pcutoff , and 〈p|P̂ |ψ〉 = 〈p|ψ〉 for |p| < pcutoff , is applied in each time
step. After penetrating through the torus region, the wavepacket propagates in chaotic seas up
to |p| � L. Then it moves ballistically in the region |p| > L and is absorbed at |p| = pcutoff .
Note that the original map (2) is recovered in the limits L → ∞ and setting d1 = d2 = 0.

We launch the wavepacket from the centre of the torus region p0 = 0 and observe the
same quantity P torus

n introduced above. As shown in figure 3, the enhancement of tunnelling
amplitude is again remarkable as compared to the system without outside ballistic propagation.
We further note that, as seen in figure 3(a), although the amplitude of wavefunction on the torus
region is gradually reduced as a result of tunnelling leakage, it is still distinguishably localized
on the torus region. Figure 3(b) also exhibits that P torus

n remain finite after exceedingly long
time steps. Especially in cases of L = 2π and L = 4π , even a signature of saturation can be
detected.

To see that the observed process is certainly a chaos-involved one, in other words, not only
the localization length but also the nature of chaos, especially the strength of chaos controls
the transition amplitude, we change the nonlinear parameter K in our system. Taking into
account that the localization length is proportional to K2 [21], we plot in figure 4 the tunnelling
rate γ as a function of K for several scaled values L̄ = L/K2. In this experiment, the initial
wavepacket is again placed inside the torus region. The kinetic term is replaced by

T ′(p) = 1
2a(p − pd) + ω + 1

2a(p − pd) tanh b(p − pd), (9)

which gives phase space whose lower part (p < 0) is all covered with KAM circles. The
kinetic term (9) is obtained by letting the second pd → ∞ and putting d1 = −apd + ω.
Such manipulation is necessary to avoid the wavepacket penetrating through the KAM
domains and reaching the opposite chaotic region. The result shows that the degree of
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Figure 4. The tunnelling rate γ as a function of the kicking strength K. γ is evaluated by fitting
the initial decay of P torus

n for n < 104 or 105 depending on K. The length L of the chaotic region
without noise (see figure 2(a)) is scaled as L̄ = L/K2. Here pd = 0.6π, a = 4 + 0.1

√
3 and

ω = 2π(1 +
√

7)/10.

enhancement depends on the strength of chaos. Our interpretation for the result is that the
density of stable and unstable manifolds becomes large with the increase of K, the number of
complex paths responsible for the tunnelling transition increases, which yields large tunnelling
amplitude.

These numerical tests, together with the semiclassical analysis using complex trajectories
show that chaotic tunnelling and dynamical localization are strongly correlated. If the
interference yielding dynamical localization is destroyed, potentially existing tunnelling
trajectories show up, which leads to the drastic enhancement of tunnelling amplitude. This
makes a sharp contrast to the system coupled with the heat bath, in which quantum tunnelling
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is suppressed [22]. We can alternatively say that torus states are sustained by surrounding
dynamical localization, otherwise they cannot stay localized on the torus. Hence, amphibious
states found in [14, 15] can be interpreted exactly as the flooding of chaotic tunnelling
trajectories.

An important nontrivial question still not clarified is the origin of life time of torus states
or the tunnelling rate between regular and chaotic regions. It is not obvious what dynamical
information is needed to specify it. In the semiclassical argument, Lyapunov exponents and
the topological entropy of outside chaotic regions again become necessary ingredients since,
as mentioned in the first part, dominant tunnelling orbits are controlled by unstable periodic
orbits in chaotic regions.

It is natural to assume that inner torus states are more robust than the outer ones and
the life time of the former is much longer than the latter [15]. This would be a qualitative
explanation for slowing down phenomenon, but the problem looks more subtle. As shown in
figure 1(c), the orbit shown by the red curve is launched at an inner torus as compared to the
orbits shown by green and yellow curves (see ξ coordinate in figure 1(a) and also note that the
initial condition is placed on p0 = 0). Nevertheless, it gains smaller imaginary action Im Sn,
since it approaches the real plane directly, whereas the latter two orbits launched at outer tori
take side trips, which cause additional gains of Im Sn. This suggests the inner torus has a
smaller life time than the outer one and so the tunnelling rate does not necessarily follow a
simple order even in a clean setting as the present model.

It is also necessary to examine how the life time of (complex) classical orbits inside the
torus region is related to the tunnelling rate. The initial manifold, {(p0 = 0, ξ + iη) ∈ C

2},
represents the support of semiclassical wavefunction. It is found that the manifold starting at
the region where the complex KAM domain dominates has a very long life time which has an
entirely complex classical origin [24].
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